
Κεφάλαιο 3 :

Σύνταξη Γλωσσών Προγραμματισμού

Αρχές Γλωσσών Προγραμματισμού και Μεταφραστών

Γιάννης Γαροφαλάκης, Σπύρος Σιούτας,

Παναγιώτης Χατζηδούκας

Εισαγωγή

◼ Οι διαφορές των ΓΠ στις συντακτικές δομές τους,

είναι μεγαλύτερες από τις διαφορές τους στις

εννοιολογικές δομές. Π.χ. το στοιχείο του πίνακα

Α στη θέση 1, γράφεται:

Α(1) στις FORTRAN, COBOL, PL/1, Ada

A[1] στις Pascal, C, C++, Java, Python, …

A<1> στη SNOBOL

◼ Στόχος συντακτικού:

Κανόνες επικοινωνίας της πληροφορίας μεταξύ

προγραμματιστή και μεταφραστή/διερμηνέα.

Γενικά κριτήρια Συντακτικών Κανόνων

◼ Αναγνωσιμότητα (readability)

Self-documenting: «φυσική» μορφή εντολών, δομημένες

εντολές, keywords και noise words, ενσωματωμένα

σχόλια, μεγάλο μήκος ονομάτων, μνημονικά σύμβολα

◼ Ευκολία Γραφής (writeability)

Πολλές φορές αντίθετο με αναγνωσιμότητα

◼ Ευκολία Μετάφρασης

Πολλές συντακτικές δομές → δυσκολία στη μετάφραση

◼ Έλλειψη Ασαφειών

Π.χ. στη C: if (n>0) {

if (a>b) z=a;

else z=b; }

Συντακτικά Στοιχεία μιας ΓΠ (1)

1. Σύνολο Χαρακτήρων (Αλφάβητο)
• Γράμματα κεφαλαία και μικρά (A,B,…,Z,a,b,…z)

• Αριθμητικά ψηφία (0,1,…,9)

• Ειδικοί χαρακτήρες (, . ; & $ * # () [] …)

Δύο αρχικές κωδικοποιήσεις χαρακτήρων για Η/Υ:

a. EBCDIC (Extended Binary Coded Decimal Interchange
Code) από την IBM (8 bit → 28 = 256 χαρακτήρες)

b. ASCII (American Standard Code for Information
Interchange) από ANSI (7 bit → 27 = 128 χαρακτήρες)

Τώρα:

UNICODE (Universal Character Set)

16 bit → 216 = 65.536 χαρακτήρες

Συμβατή κωδικοποίηση με ASCII

Συντακτικά Στοιχεία μιας ΓΠ (2)
2. Αναγνωριστικά (identifiers)

Ονόματα μεταβλητών, συναρτήσεων, κ.λπ., που ορίζει
ο χρήστης. Π.χ. SUM (αλλά όχι SU#M, SU*M)

3. Σύμβολα πράξεων

+ * - / ** && || AND OR NOT := (εντολή ανάθεσης) …

4. Λέξεις Κλειδιά (keywords) και Δεσμευμένες

Λέξεις (reserved words)

Λέξεις Κλειδιά: Χρησιμοποιούνται από τη ΓΠ

Δεσμευμένες Λέξεις: Λέξεις Κλειδιά που δεν μπορεί ο

προγραμματιστής να αλλάξει τη χρήση τους

◼ Η C έχει 28 δεσμευμένες λέξεις (int, else, for, …)

◼ Η αρχική FORTRAN δεν είχε τα DO, IF ως

δεσμευμένες λέξεις

Συντακτικά Στοιχεία μιας ΓΠ (3)

ΠΛΕΟΝΕΚΤΗΜΑΤΑ ΔΕΣΜΕΥΜΕΝΩΝ ΛΕΞΕΩΝ

 Ευανάγνωστα Προγράμματα

 Εύκολη εύρεση στον Πίνακα Συμβόλων από Μεταφραστή

 Διευκολύνουν τον εντοπισμό και τη διόρθωση λαθών

ΜΕΙΟΝΕΚΤΗΜΑΤΑ ΔΕΣΜΕΥΜΕΝΩΝ ΛΕΞΕΩΝ

 Όσο αυξάνονται, πιο δύσκολο να τις θυμάται ο χρήστης

 Δύσκολη η επέκταση της ΓΠ με νέες δεσμευμένες λέξεις,

διότι τα παλιά προγράμματα μπορεί να τις χρησιμοποιούν

ως ονόματα μεταβλητών

Συντακτικά Στοιχεία μιας ΓΠ (4)

5. Σχόλια και Θόρυβος

Σχόλια: π.χ. /* … */ στη C, εντολή REM στην BASIC

Θόρυβος: π.χ. στην COBOL: GO TO <label>

6. Κενά

Διάφορες χρήσεις. Π.χ. στη SNOBOL είναι το σύμβολο

της συγχώνευσης strings

7. Διαχωριστικά (delimiters)

• Στη C: { … }. Στις ALGOL, Pascal: begin … end

• Ομαδοποίηση εντολών

• Καλό για άρση ασαφειών

Συντακτικά Στοιχεία μιας ΓΠ (4)

8. Εκφράσεις (expressions)

Συναρτήσεις που προσπελαύνουν δεδομένα σε ένα

πρόγραμμα και επιστρέφουν μια τιμή. Π.χ. :

Α+Β*C

9. Εντολές (statements)

Δημιουργούνται από συνδυασμούς εκφράσεων και

άλλων συντακτικών στοιχείων. Π.χ. :

D = (A+B*C) – E/2

10. Δομή Προγράμματος – Υποπρογραμμάτων

Ιεραρχία Συντακτικών Στοιχείων

Αλφάβητο

ΣύμβολαΑναγνωριστικά Λέξεις Κλειδιά Σχόλια Κενά Διαχωριστικά

Εκφράσεις

Εντολές

Δομή Προγράμματος – Υποπρογραμμάτων

Δομή Προγράμματος – Υποπ/μάτων (1)
a. Ξεχωριστός Ορισμός Υποπρογράμματος

◼ C, FORTRAN, Java, Python

◼ Όλα τα τμήματα κώδικα είναι “υποπρογράμματα”

◼ Κάθε υποπρόγραμμα θεωρείται διακριτή συντακτική
μονάδα, μπορεί να μεταφράζεται χωριστά και να
συνδέονται όλα όταν γίνεται φόρτωση

b. Ξεχωριστός Ορισμός Δεδομένων

◼ Java, Python, C++, Smalltalk: Μηχανισμός κλάσεων

◼ Ομαδοποίηση των λειτουργιών που χειρίζονται ένα
δεδομένο data object

c. Φωλιασμένος Ορισμός Υποπρογράμματος

◼ Pascal, ALGOL, JavaScript, Python

◼ Ιεραρχικός ορισμός υπ/τος μέσα σε υπ/μα. Δυνατότητα
ορισμού εμβέλειας. Στατικός έλεγχος τύπων.

Δομή Προγράμματος – Υποπ/μάτων (2)

d. Ξεχωριστός Ορισμός Interface

◼ C, C++, Ada

◼ Δυνατότητα χρήσης file operations του ΛΣ (.h και .c file

specs του make στη C)

e. Περιγραφές δεδομένων χωριστές από τις

εκτελέσιμες εντολές

◼ COBOL

◼ Όλα τα data είναι global. Data και procedure divisions

f. Μη-χωριστοί Ορισμοί Υποπρογραμμάτων

◼ BASIC, SNOBOL

◼ Καμία οργάνωση. Τα υπ/ματα μπορούν να χρησιμο-

ποιηθούν και από άλλα τμήματα του προγράμματος

Φάσεις Μετάφρασης (1)

◼ Κάθε Φάση δέχεται ως είσοδο ένα πρόγραμμα
ισοδύναμο με το αρχικό σε κάποια μορφή και παράγει
ως έξοδο το ίδιο πρόγραμμα σε άλλη μορφή.

◼ Δύο Στάδια:
 Ανάλυση πηγαίου προγράμματος (3 Φάσεις)

 Σύνθεση εκτελέσιμου κώδικα (3-4 Φάσεις)

◼ Αριθμός Περασμάτων πηγαίου κώδικα:

 Συνήθως: 2 περάσματα αντίστοιχα με τα 2 Στάδια

 Πολλές φορές: 3 περάσματα:
◼ Ανάλυση πηγαίου κώδικα

◼ Ξαναγράψιμο πηγαίου κώδικα με αλγόριθμους βελτιστοποίησης

◼ Δημιουργία εκτελέσιμου κώδικα

Φάσεις Μετάφρασης (2)

Στάδιο Ανάλυσης

Στάδιο Σύνθεσης

Φάσεις Ανάλυσης πηγαίου προγρ/τος (1)

◼ Λεξική Ανάλυση (lexical analysis – scanning)

 Η ακολουθία χαρακτήρων του αρχικού προγράμματος

χωρίζεται σε βασικά συντακτικά στοιχεία – tokens – όπως:

αναγνωριστικά, αριθμοί, σύμβολα, λέξεις κλειδιά, …

 Μπαίνει TYPE TAG σε κάθε token

 Εισάγονται τα tokens στον Πίνακα Συμβόλων (symbol

table) αφού έχουν μετατραπεί σε κατάλληλη εσωτερική

αναπαράσταση

 Υπολογιστικό μοντέλο λεξικής ανάλυσης:

Πεπερασμένα Αυτόματα (finite-state automata)

Φάσεις Ανάλυσης πηγαίου προγρ/τος (2)

◼ Συντακτική Ανάλυση (syntax analysis – parsing)

 Αναγνωρίζονται τα συντακτικά στοιχεία υψηλότερου

επιπέδου (εκφράσεις, εντολές, υποπρογράμματα)

 Συνήθως εναλλάσσεται με την επόμενη Φάση

(σημασιολογική ανάλυση)

 Οι δύο Φάσεις «επικοινωνούν» μέσω μιας stack, στην

οποία ο συντακτικός αναλυτής τοποθετεί τα στοιχεία που

αναγνωρίζει

 Παράγεται το Δέντρο Συντακτικής Ανάλυσης (parse tree)

που δίνει και την ιεραρχία των συντακτικών στοιχείων

 Τύπος Γραμματικής για συντακτική ανάλυση:

Γλώσσες Χωρίς Συμφραζόμενα (context-free languages)

Φάσεις Ανάλυσης πηγαίου προγρ/τος (3)

◼ Σημασιολογική Ανάλυση (semantic analysis)

 Κεντρικό τμήμα της μετάφρασης. Είναι η γέφυρα μεταξύ

ανάλυσης και σύνθεσης

 Αρχίζει και διαμορφώνεται η δομή εκτελέσιμου κώδικα

 Στατικός έλεγχος τύπων και παραμέτρων υποπρ/των

 Άλλες λειτουργίες:

◼ Συντήρηση Πίνακα Συμβόλων (χρησιμοποιείται από γλώσσες και

στο run time, π.χ. αν έχει δημιουργία μεταβλητών χωρίς ορισμό, ή

σε debugging όπως στο dbx του UNIX)

◼ Εισαγωγή ενσωματωμένης (implicit) πληροφορίας (π.χ. τύπος

μεταβλητών της FORTRAN με βάση το αρχικό γράμμα τους)

◼ Εντοπισμός λαθών (που δεν εντοπίζονται στη συντακτική ανάλυση)

◼ Macro processing (αντικατάσταση macro με τον κώδικά του)

◼ Compile-time operations

Φάσεις Σύνθεσης εκτελέσιμου κώδικα (1)

◼ Δημιουργία Ενδιάμεσου Κώδικα (intermediate code

generation)

 Παράγεται ακολουθία operators – ορισμάτων

◼ Βελτιστοποίηση κώδικα ανεξάρτητα από μηχανή

(machine independent code improvement)

 Υπολογισμός κοινών υπο-εκφράσεων μία φορά

 Απομάκρυνση σταθερών λειτουργιών από loops

 Βελτιστοποίηση της χρήσης registers

Φάσεις Σύνθεσης εκτελέσιμου κώδικα (2)

a) Temp1 = B + C

b) Temp2 = Temp1 + D

c) A = Temp2

Παράδειγμα βελτιστοποίησης: Εντολή A = B+C+D

Σε «ενδιάμεσο» κώδικα: Σε «τελικό» κώδικα:
1. Load register with B

2. Add C to register

3. Store register in Temp1

4. Load register with Temp1

5. Add D to register

6. Store register in Temp2

7. Load register with Temp2

8. Store register in A

Τα ζευγάρια εντολών 3-4 και 6-7 του «τελικού»

κώδικα, μπορούν να αφαιρεθούν - βελτιστοποίηση

Τυπικός ορισμός Συντακτικού

◼ Στόχος → Ακριβείς ορισμοί συντακτικού των ΓΠ για

τους χρήστες και υλοποιητές των ΓΠ

◼ Επιπλέον → Βάση για τη λεξική και συντακτική

ανάλυση από τους μεταφραστές

◼ Ο Τυπικός (φορμαλιστικός) ορισμός του Συντακτικού

μιας ΓΠ ονομάζεται Γραμματική

◼ Μια Γραμματική αποτελείται από:

 Ένα πεπερασμένο σύνολο συμβόλων – Αλφάβητο

 Ένα πεπερασμένο σύνολο ορισμών (Κανόνες ή

Παραγωγές) που καθορίζουν τις ακολουθίες χαρακτήρων

(ή tokens) που δομούν επιτρεπτά προγράμματα της ΓΠ

Τυπική Γραμματική (formal grammar)

◼ Γραμματική ορισμένη με τη χρήση αυστηρά

καθορισμένης σημειογραφίας (notation)

◼ Π.χ. η σημειογραφία BNF (Backus Naur Form) για

τον ορισμό Γραμματικών χωρίς συμφραζόμενα

(context-free grammars)

 Εμφάνιση στην αναφορά της ALGOL (1960)

 Την ίδια περίπου εποχή (1959) ο γλωσσολόγος Noam

Chomsky ανέπτυξε τη θεωρία του για τις Γραμματικές

 Οι δύο προσεγγίσεις αποδείχτηκαν ισοδύναμες

Τυπικές Γλώσσες (formal languages)

◼ Το συντακτικό τους ορίζεται από Τυπικές

Γραμματικές

◼ Για μια Τυπική Γλώσσα L χρειάζονται:

1. Ένα Αλφάβητο Σ διακριτών συμβόλων

2. Ένα σύνολο κανόνων Ρ που καθορίζουν ποιες

ακολουθίες (ή λέξεις) συμβόλων του Σ είναι αποδεκτές

στην L

Τα παραπάνω 1 και 2 ονομάζονται Γραμματική στο Σ.

Δηλαδή, μια Γραμματική G είναι ένα ζευγάρι (Σ, Ρ)

που παράγει τη γλώσσα L(G)

Ένα παράδειγμα Τυπικής Γλώσσας

◼ Σ = {0 . 1}

◼ Ρ = { R1: S0 → 0S1

R2: S1 → .S2

R3: S2 → 0S3

R4: S2 → 1S3

R5: S3 → 0

◼ Η γλώσσα L(B) = {0.00 0.01 0.10 0.11} με Β = (Σ, Ρ)

είναι όλοι οι μη-αρνητικοί δυαδικοί αριθμοί μικρότεροι

από 1, με δύο υπο-δυαδικά ψηφία.

N = { S0 S1 S2 S3 } : Συντακτικές

R6: S3 → 1 }

Κατηγορίες ή Μη-Τερματικά

Σύμβολα

Start = S0 : Αρχικό Σύμβολο (start

symbol). Η συντακτική κατηγορία

του πιο υψηλού επιπέδου

→ : Ορίζεται ως (μετασύμβολο)

Ισοδύναμη Γραμματική

Ρ = { R1: S0 → 0.S2

R2: S2 → 0S3

R3: S2 → 1S3

R4: S3 → 0

R5: S3 → 1 }

Ένα παράδειγμα Τυπικής Γλώσσας (2)

◼ Παραγωγή R: α → β

Ένα νέο string παράγεται με τη χρήση της
παραγωγής R, αντικαθιστώντας το α με το β

◼ Δημιουργία (derivation) του string 0.01:

R1 R2 R3 R6

S0 ⇒ 0S1 ⇒ 0.S2 ⇒ 0.0S3 ⇒ 0.01

Πρέπει με διαδοχικές χρήσεις παραγωγών,

ξεκινώντας από το start symbol, να καταλήγουμε

σε αποδεκτό string της γλώσσας

R1: S0 → 0S1

R2: S1 → .S2

R3: S2 → 0S3

R4: S2 → 1S3

R5: S3 → 0

R6: S3 → 1

Ένα παράδειγμα Τυπικής Γλώσσας (3)

Δέντρο Συντακτικής Ανάλυσης του string 0.01

S0

0 S1

. S2

0 S3

1

R1 →

R2 →

R3 →

R6 →

R1: S0 → 0S1

R2: S1 → .S2

R3: S2 → 0S3

R4: S2 → 1S3

R5: S3 → 0

R6: S3 → 1

Σύστημα Παραγωγής

G = (Σ, Ν, Ρ, Start)

όπου Start  Σ U N

Ιεραρχία Γραμματικών

◼ Ανάλογα με το είδος των παραγωγών, υπάρχουν

τελικά μόνο 4 τύποι τυπικών γλωσσών

◼ ΤΥΠΟΣ ΓΛΩΣΣΑΣ ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΗ

(αναγνωρίζεται από)

Γλώσσες του Chomsky

ΤΥΠΟΣ 0: Γλώσσες χωρίς περιορισμούς

ΤΥΠΟΣ 1: Γλώσσες με συμφραζόμενα

ΤΥΠΟΣ 2: Γλώσσες χωρίς συμφραζόμενα

ΤΥΠΟΣ 3: Κανονικές Γλώσσες

Σύμβαση γραφής στις γραμματικές!

Στις γραμματικές, υπάρχει σύμβαση γραφής από την Ιεραρχία Chomsky που
χρησιμοποιείται ΠΑΝΤΟΥ στη θεωρία γλωσσών:

Με κεφαλαία γράμματα (A, B, C, S, X, L, D…) γράφουμε ΤΑ
ΜΗ-ΤΕΡΜΑΤΙΚΑ.

Με μικρά γράμματα (a, b, c, 0, 1, x, y…) γράφουμε ΤΑ
ΤΕΡΜΑΤΙΚΑ.

Αυτή η σύμβαση είναι καθολική και επιτρέπει να ξεχωρίζουμε:
Τι είναι δομικό σύμβολο της γραμματικής (μη-τερματικό)
Τι είναι πραγματικός χαρακτήρας της γλώσσας (τερματικό

Τύπος 3: Κανονικές Γλώσσες

(regular languages)

◼ Η Γραμματική G = (Σ, Ν, Ρ, Start) είναι κανονική,

αν οι όλοι οι κανόνες παραγωγής της είναι της

μορφής:

Α → α (παράγει α) ή Α → αΒ (παράγει α και μετά Β)

όπου α ∈ Σ = τερματικό σύμβολο

B ∈ N = μη τερματικό

Δηλαδή, το πρώτο σύμβολο δεξιά του βέλους

πρέπει πάντα είναι τερματικό και μπορεί να

ακολουθείται από το πολύ ένα μη- τερματικό

σύμβολο

Τύπος 3: Κανονικές Γλώσσες

(regular languages)

◼ Κατάλληλες για λεξική ανάλυση
Οι Κανονικές Γλώσσες χρησιμοποιούνται σε:

-αναγνώριση tokens σε μεταγλωττιστές

-διερμηνευτές

-κανονικές εκφράσεις (regex)

-patterns όπως «όλα τα ψηφία», «όλα τα γράμματα»,

«ακολουθίες χαρακτήρων»

◼ Αναγνωρίζονται από πεπερασμένα αυτόματα

◼ Αν μια γραμματική είναι κανονική, υπάρχει ισοδύναμο πεπερασμένο

αυτόματο που αναγνωρίζει την ίδια γλώσσα.

◼ Αν υπάρχει πεπερασμένο αυτόματο, υπάρχει ισοδύναμη κανονική

γραμματική.

Τύπος 3: Κανονικές Γλώσσες

(regular languages)

◼ Κανονικές γλώσσες = πολύ απλές γλώσσες

◼ Οι κανόνες τους έχουν αυστηρό σχήμα A → α ή

A → αB

◼ Είναι ιδανικές για λεξική ανάλυση

◼ Τις αναγνωρίζουν πεπερασμένα αυτόματα

Παράδειγμα Κανονικής Γραμματικής

X → a | … | z | aL | … | zL

L → aL | … | zL | 0L | … | 9L | a | … | z | 0 | … | 9

Τα σύμβολα X και L

X = η αρχή του ονόματος (πρώτος χαρακτήρας)

L = η συνέχεια του ονόματος (όλοι οι υπόλοιποι χαρακτήρες)

Αυτά είναι μη τερματικά σύμβολα (Non-terminals).

Τερματικά σύμβολα

Τα επιτρεπόμενα τερματικά είναι:

μικρά γράμματα: a … z

ψηφία: 0 … 9

Παράδειγμα Κανονικής Γραμματικής

X → a | … | z | aL | … | zL

L → aL | … | zL | 0L | … | 9L | a | … | z | 0 | … | 9

Κανόνες για το X (πρώτο γράμμα του ονόματος)

X → a | … | z

Αυτό σημαίνει:

•Το X μπορεί να αντικατασταθεί από ένα ΜΟΝΟ

γράμμα, από το a έως το z.
π.χ. a, b, h

•X → aL | … | zL

Ή μπορεί να ξεκινά με γράμμα και μετά να

συνεχίζεται - Το X μπορεί να γίνει «γράμμα + L
π.χ. aL, kL, zL → που παράγουν ab, az5, x0g3 κτλ.
Άρα η γραμματική περιγράφει ονόματα της μορφής:

1ο σύμβολο: γράμμα

επόμενα σύμβολα: γράμματα ή/και ψηφία

ακριβώς όπως οι μεταβλητές σε πολλές γλώσσες

προγραμματισμού.

Κανόνες για το L (ό,τι ακολουθεί μετά το πρώτο

γράμμα) τώρα υπάρχουν δύο ομάδες κανόνων;

Γιατί το L πρέπει να μπορεί:

είτε να συνεχίσει το όνομα → με L στο τέλος

είτε να σταματήσει το όνομα → χωρίς L στο τέλος

η πρώτη ομάδα για να συνεχίζεται η λέξη

η δεύτερη για να τερματίζει

ΟΜΑΔΑ Α: «ΣΥΝΕΧΙΖΩ»

aL | … | zL | 0L | … | 9L

Αυτοί οι κανόνες λένε:

«Βάλε ένα γράμμα ή ψηφίο,

και συνέχισε ξανά με L.»

Παράδειγμα:

L ⇒ aL ⇒ a3L ⇒ a3dL ⇒ a3d7

Περιγράφει ονόματα Χ (π.χ. μεταβλητών) που είναι ένα μικρό γράμμα, ή

ένα μικρό γράμμα που ακολουθείται από ακολουθία μικρών

γραμμάτων ή/και αριθμητικών ψηφίων.

Π.χ. a, h7, kds09u7

ΟΜΑΔΑ Β:

«ΣΤΑΜΑΤΑΩ»

a | … | z | 0 | … | 9

Αυτοί οι κανόνες λένε:

«Βάλε ένα γράμμα ή ψηφίο

— και ΤΕΛΟΣ,

δεν συνεχίζουμε άλλο.»

Παράδειγμα:

•L ⇒ b

•L ⇒ 9

•L ⇒ d

Τύπος 2: Γλώσσες χωρίς συμφραζόμενα

(context-free languages)
◼ Η Γραμματική G = (Σ, Ν, Ρ, Start) είναι χωρίς

συμφραζόμενα, αν οι παραγωγές της είναι

της μορφής:

Α → s όπου Α є Ν και s є Σ U N
δηλαδή μια ακολουθία από τερματικά και μη τερματικά

◼ η αριστερή πλευρά είναι πάντα ΕΝΑ και
ΜΟΝΟ μη τερματικό, χωρίς τίποτα γύρω του.

Μπορούν να περιγράψουν πολύ πιο «δομημένες»

γλώσσες, όπως:

-παρενθέσεις

-nested blocks

-συντακτικό γλωσσών προγραμματισμού

-δέντρα σύνταξης

Σ: τερματικά (π.χ. σύμβολα

προγράμματος)

N: μη τερματικά (συντακτικές

κατηγορίες: S, A, B…)

P: κανόνες παραγωγής

Start: το αρχικό σύμβολο

«χωρίς συμφραζόμενα»;

Σημαίνει ότι:

•Μπορούμε να αντικαταστήσουμε το μη τερματικό Α

•οπουδήποτε εμφανίζεται στο string

•χωρίς να μας ενδιαφέρει τι υπάρχει πριν ή μετά (context).

Δηλαδή:

Η αντικατάσταση Α → s ισχύει παντού, ανεξάρτητα από τα

γειτονικά σύμβολα.

Γι’ αυτό λέγονται χωρίς συμφραζόμενα.

Στις context-sensitive (με συμφραζόμενα), αυτό δεν ισχύει.

•S → aSb

•S → ε

•A → BC

•B → b

Σε όλα:

•αριστερά υπάρχει ένα μη-τερματικό

•δεξιά έχουμε οποιαδήποτε

ακολουθία συμβόλων

Αυτά είναι context-free.

Τύπος 2: Γλώσσες χωρίς συμφραζόμενα

(context-free languages)

◼ Κατάλληλες για συντακτική ανάλυση γιατί μπορούν να περιγράψουν

ακριβώς τα φαινόμενα που εμφανίζονται στο συντακτικό μιας

γλώσσας προγραμματισμού.

περιγράφουν τις περισσότερες δομές με εμφώλευση:

-σωστά ζευγμένες παρενθέσεις: (), (()), (()())

-HTML tags με nested blocks

-δομή if-else

-δομή while-do

-εκφράσεις με προτεραιότητα τελεστών

-συντακτικό προγραμματισμού γενικά

-δέντρα έκφρασης

Τύπος 2: Γλώσσες χωρίς συμφραζόμενα

(context-free languages)

◼ Αναγνωρίζονται από push-down αυτόματα στοίβας

Γιατί η στοίβα επιτρέπει:

-αντιστοίχιση παρενθέσεων

-διαχείριση nested δομών

-αποθήκευση προσωρινής πληροφορίας

Ό,τι δεν μπορεί να γίνει με πεπερασμένο αυτόματο (λόγω

περιορισμένης μνήμης), γίνεται με PDA.

Το Παράδειγμα

X → a | … | z | aL | … | zL

L → aL | … | zL | 0L | … | 9L | a | … | z | 0 | … | 9

μπορεί να γραφεί ως:

X → L | XL | XD

L → a | … | z

D → 0 | … | 9

Όταν ξαναγράφουμε τη γραμματική σε πιο αφαιρετική μορφή,

χρειαζόμαστε το D για να ξεχωρίσουμε γράμματα από ψηφία.

Όμως, αυτή η νέα γραφή δεν είναι πια regular γιατί οι κανόνες δεν

αρχίζουν με τερματικό — άρα είναι context-free, όχι regular.»

στη νέα γραφή, έχουμε:

X → L

(δεξιά ΔΕΝ αρχίζει με τερματικό)

X → XL

(το πρώτο σύμβολο δεξιά είναι μη

τερματικό, όχι τερματικό)

X → XD

(και εδώ πάλι ξεκινά με μη τερματικό)

Τύπος 1: Γλώσσες με συμφραζόμενα

(context-sensitive languages)

◼ Η Γραμματική G = (Σ, Ν, Ρ, Start) είναι με

συμφραζόμενα, αν οι παραγωγές είναι της μορφής:

α → β όπου:
Η αριστερή πλέυρά α μπορεί να περιέχει περισσότερα από 1

σύμβολα (τουλάχιστον 1 μη-τερματικό) –
Δηλαδή: δεν αντικαθιστούμε ένα σύμβολο μόνο του αλλά μια ολόκληρη

ακολουθία συμβόλων

Π.χ.: aB δύο σύμβολα → άρα ακολουθία, όχι μονό σύμβολο.

cDB 3 σύμβολα → άρα ακολουθία.

xTy: 3 σύμβολα → άρα ακολουθία

Όλα αυτά είναι ακολουθίες (όχι ένα σύμβολο).

Στις γραμματικές με συμφραζόμενα, η αντικατάσταση ενός συμβόλου δεν γίνεται ανεξάρτητα

από το περιβάλλον του. Χρειάζεται να έχουμε συγκεκριμένα σύμβολα γύρω του. Οι

παραγωγές έχουν αριστερά μια ακολουθία συμβόλων, όχι μόνο ένα μη-τερματικό.

Τύπος 1: Γλώσσες με συμφραζόμενα

(context-sensitive languages)

◼ (Μήκος του α) ≤ (Μήκος του β)
Οι context-sensitive γραμματικές δεν επιτρέπουν εξαφάνιση

συμβόλων (δεν υπάρχει κανόνας τύπου A → ε).

Η γλώσσα πρέπει να “μη συρρικνώνεται”.

Γιατί λέγονται «με συμφραζόμενα» (context-sensitive);

Διότι η αντικατάσταση ενός μη-τερματικού εξαρτάται από τα σύμβολα

γύρω του.

Παράδειγμα:
aB → ab

Το Β δεν αντικαθίσταται μόνο του.

Αντικαθίσταται μόνο όταν έχει “a” δίπλα

του.

Αυτό σημαίνει ότι το “a” είναι το

συμφραζόμενο (context).

Αν είχαμε:
cB → bc

τότε το B μετατρέπεται σε b μόνο

όταν προηγείται c.

Το “c” είναι το συμφραζόμενο στην

περίπτωση αυτή.

Τύπος 1: Γλώσσες με συμφραζόμενα

(context-sensitive languages)

◼ Αναγνωρίζονται από linear-bounded αυτόματα

Τι μπορούν να περιγράψουν οι context-sensitive grammars;

Πολύ ισχυρές γλώσσες, π.χ.:

γλώσσες όπου ο αριθμός των συμβόλων πρέπει να είναι ίδιος (aⁿ bⁿ cⁿ)

γλώσσες με συμφωνία σε πλήθος συμβόλων

μορφές συμφραζόμενων που δεν μπορούν να περιγράψουν ούτε οι

κανονικές ούτε οι χωρίς συμφραζόμενα.

Είναι τόσο ισχυρές ώστε:

Οι context-sensitive γλώσσες αναγνωρίζονται από γραμμικά φραγμένα

αυτόματα (Linear Bounded Automata — LBA), που είναι μια μορφή

περιορισμένης Turing Machine.

Τύπος 0: Γλώσσες χωρίς περιορισμούς

◼ Η Γραμματική G = (Σ, Ν, Ρ, Start) είναι χωρίς

περιορισμούς, αν οι παραγωγές είναι της μορφής:

α → β όπου:
- το α μπορεί να είναι οποιοδήποτε string από σύμβολα του N ∪ Σ

αρκεί να έχει τουλάχιστον 1 μη τερματικό
Για να μπορεί η γραμματική να δουλεύει!

Αν είχαμε μόνο τερματικά αριστερά, δεν θα μπορούσαμε να κάνουμε αντικατάσταση

Παράδειγμα έγκυρων Type-0 αριστερών πλευρών:

A

aA

BcD

xyTz

- το β μπορεί να είναι οποιοδήποτε string, ακόμα και κενό (ε)

Δηλαδή:

Δεν υπάρχει ΚΑΝΕΝΑΣ περιορισμός στη μορφή των κανόνων.

Τύπος 0: Γλώσσες χωρίς περιορισμούς

◼ Αναγνωρίζονται από Μηχανές Turing

◼ Οι γραμματικές αυτές είναι τόσο ισχυρές όσο μια

μηχανή Turing και μπορούν να περιγράψουν

οποιαδήποτε υπολογίσιμη γλώσσα.

Μπορούν να παράγουν οποιαδήποτε υπολογίσιμη γλώσσα

Περιλαμβάνουν και όλες τις άλλες γλώσσες (regular, CFG, CSG)

Λεξική Ανάλυση (πρώτο στάδιο ενός μεταγλωττιστή)

◼ Μηχανή αναγνώρισης tokens:

Πεπερασμένα Αυτόματα

Finite State Automata

Κανονικές Εκφράσεις

Regular Expressions

◼ Ένα Πεπερασμένο Αυτόματο για κάθε είδος token

(μεταβλητές, σύμβολα, λέξεις κλειδιά, …)

Λεξική Ανάλυση

x := 37

/* result */

RETURN x

VARIABLE /x

ASSIGN SYMBOL

INTEGER /37

RETURN

VARIABLE /x

Μετατροπή σε Tokens

(στον Πίνακα Συμβόλων)
Αρχικό Πρόγραμμα

(πηγαίος κώδικας) Διαδικασία

Token = η μικρότερη μονάδα πληροφορίας που έχει νόημα για τον μεταγλωττιστή.

Ο μεταγλωττιστής δεν ενδιαφέρεται για τα κενά, τα σχόλια, τα line breaks — αυτά τα αφαιρεί ο λεξικός

αναλυτής.

Λεξική Ανάλυση (πρώτο στάδιο ενός μεταγλωττιστή)

Token Regular expression

INTEGER [0-9]+

IDENTIFIER [a-zA-Z][a-zA-Z0-9]*

ASSIGN SYMBOL :=

COMMENT /* (anything)* */

Γιατί χρησιμοποιούμε regular expressions & finite automata;

Επειδή τα tokens ανήκουν σε Regular Languages.

Παράδειγμα:

Κάθε τέτοιο regex μπορεί να μετατραπεί σε ένα πλήρως αυτόματο DFA/NFA

Στη λεξική ανάλυση, ο μεταγλωττιστής παίρνει τον πηγαίο κώδικα ως

κείμενο και τον μετατρέπει σε tokens — τις βασικές μονάδες νοήματος.

Κάθε token αναγνωρίζεται από ένα πεπερασμένο αυτόματο, το οποίο έχει

κατασκευαστεί από μια κανονική έκφραση. Επειδή τα tokens ανήκουν σε

regular languages, χρησιμοποιούμε finite-state automata για την

αναγνώρισή τους

Λεξική Ανάλυση

◼ Μία Κανονική Έκφραση (ΚΕ) είναι ένα από τα:

 Ένας χαρακτήρας a

 Το є σύμβολο (τίποτα – empty)

 Δύο ΚΕ η μία δίπλα στην άλλη ab

 Δύο ΚΕ χωρισμένες με | (ή) a|b

 Μία ΚΕ ακολουθούμενη από το Kleene Star: Χ* a*: a,aa,aaa
(συνένωση 0 ή περισσότερων Κανονικών Εκφράσεων Χ)

Χρησιμοποιούνται επίσης, για συντομία, τα σύμβολα:

◼ Χ +
 ΧΧ* (1 ή περισσότερα Χ)

◼ Χ?  Χ | є (κανένα ή 1 Χ)

◼ c – g  c | d | e | f | g

◼ (X)  για καθορισμό προτεραιότητας της ΚΕ

Λεξική Ανάλυση

◼ Παραδείγματα:

Π.χ.: 00*11* ή 0+1+

(a|є)bb* ή a?b+

0011

Σημαίνει:

•"0" ακολουθούμενο από όσες φορές θέλεις 0

•"1" ακολουθούμενο από όσες φορές θέλεις 1

Γίνονται δεκτά:

•011

•0011111

•00011

•01

0+1+
Το + σημαίνει "1 ή περισσότερες φορές".

Άρα:

•1 ή περισσότερα 0, μετά

•1 ή περισσότερα 1

Παραδείγματα:

•01

•001111

•0001111

(a|e)bb*

α ή e, μετά bb*, δηλ. b 1 ή περισσότερες φορές.

Γίνονται δεκτά:

•abb

•ebbbbbbb

a?b+
Το ? σημαίνει 0 ή 1 φορά.

Άρα:

•μπορεί να έχει ή να μην έχει a

•μετά 1 ή περισσότερα b

Δέχεται:

•b

•ab

•abbbb

Λεξική Ανάλυση

◼ Παραδείγματα:

Π.χ.: Γαρ(ο|ου|υ|ε)φαλλ?άκης

Αυτό ταιριάζει ονόματα όπως:

•Γαροίφαλάκης

•Γαρουφαλάκης

•Γαρυεφαλάκης

•Γαροιουφαλάκης

•Γαρυεφαλλάκης

•Γαρυεφαλάκης

•Το ? στο λλ? σημαίνει ότι το 2ο λ είναι

προαιρετικό.

Λεξική Ανάλυση

◼ Κανονικές Γλώσσες:

Δημιουργούνται από Κανονικές Εκφράσεις και

αναγνωρίζονται από Πεπερασμένα Αυτόματα

Κανονικές Εκφράσεις → Regular

Expressions

Ό,τι μπορείς να περιγράψεις με regex:
•μεταβλητές: ^[a-zA-Z][a-zA-Z0-9]*$

•αριθμούς: [0-9]+

•whitespace: [\t\n]+

•σχόλια: /* .* */

•keywords: if, while, return, κλπ.

Αυτά περιγράφουν Κανονικές Γλώσσες.

Αναγνωρίζονται από Πεπερασμένα

Αυτόματα (Finite Automata)

Δηλαδή:

•DFA (deterministic finite automaton)

•NFA (non-deterministic finite automaton)

Κάθε κανονική έκφραση μπορεί να

μετατραπεί σε ένα τέτοιο αυτόματο.

Γι' αυτό εργαλεία όπως lex, flex, antlr

δημιουργούν αυτόματα που σκανάρουν τη

γλώσσα.

Λεξική Ανάλυση

◼ Για τη δημιουργία Γλωσσών Χωρίς Συμφραζόμενα, αρκεί η

προσθήκη δυνατότητας Αναδρομής.

Για να φτιάξουμε μια CFL, αρκεί:

•Να επιτρέψουμε σε έναν κανόνα να

ανακαλεί τον εαυτό του.

•Στις ΚΕ αυτό ΔΕΝ γίνεται.

•Στις γραμματικές contex free γίνεται

μέσω αναδρομής.

Γιατί χρειάζεται αναδρομή;

Επειδή οι CFL μπορούν να περιγράψουν

δομές που χρειάζονται ισορροπία και

ένθετα στοιχεία:
•παρενθέσεις: (()(()))

•μπλοκ κώδικα: { if(x){ y; } }

•σύνθετες εκφράσεις: a + b * c - d

•δέντρα σύνταξης

Όλα αυτά δεν μπορούν να περιγραφούν

με regular expressions.

Λεξική Ανάλυση

◼ Παράδειγμα Κανονικών Εκφράσεων:

Στην Pascal για την παραγωγή και αναγνώριση

8.76αριθμών (π.χ.: 34 54e22 61.7E-89), οι Κανονικοί

Ορισμοί (τα παρακάτω ονόματα δεν είναι συντακτικές

κατηγορίες, ίσως θα μπορούσαν να γίνουν)

είναι αντίστοιχη της συνοπτικής κανονικής έκφρασης:

(0 – 9) + (.(0 – 9) +)? ((e | E)(+ | -)? (0 – 9) +)?

Λεξική Ανάλυση
digit = οποιοσδήποτε αριθμός 0–9.

•ένα ψηφίο digit

•ακολουθούμενο από digit* (0 ή περισσότερες φορές) Άρα:
3, 54, 123456789, 99 όλα είναι unsigned integers.

Μέρος 1: unsigned_integer

Αυτό είναι το κομμάτι πριν από την υποδιαστολή.
Παράδειγμα: 34, 61, 54, 8

Μέρος 2: (. unsigned_integer) | ε

Αυτό είναι το δεκαδικό μέρος.
•είτε .123

•είτε δεν υπάρχει καθόλου (ε)

Παραδείγματα που γίνονται δεκτά:
•34.56

•61.7

•54 (χωρίς δεκαδικά → ε)

Μέρος 3: ((e|E)(+|-|ε)unsigned_integer) | ε

Αυτό είναι το εκθετικό μέρος.
•ξεκινάει με e ή E

•μπορεί να έχει πρόσημο + ή - ή τίποτα

•μετά unsigned integer

Παραδείγματα που γίνονται δεκτά:
•e22

•E-89

•e+10

•ή καθόλου (ε)

34

8.76

54e22

61.7E-89

71E+10

Λεξική Ανάλυση

αντίστοιχη της συνοπτικής κανονικής έκφρασης:

(0 – 9) + (.(0 – 9) +)? ((e | E)(+ | -)? (0 – 9) +)?

(0-9)+

ένα ή περισσότερα ψηφία
.(0-9)+

μια τελεία + ένα ή περισσότερα ψηφία

(το ? απ’ έξω, δείχνει ότι είναι προαιρετικό)
(e|E)

το γράμμα e ή E
(+|-)?

το πρόσημο — προαιρετικό
(0-9)+

τουλάχιστον ένα ψηφίο για τον εκθέτη

Το τελευταίο ? κάνει ΟΛΟ το εκθετικό

μέρος προαιρετικό.

Περιγράφει στη γλώσσα Pascal:

•ακέραιους

•δεκαδικούς

•επιστημονική γραφή (exponential notation)

•με ή χωρίς υποδιαστολή

•με ή χωρίς πρόσημο στον εκθέτη

Λεξική Ανάλυση

◼ Η αντίστοιχη τυπική γραμματική, έχει τους παραπάνω

κανόνες σε αντίθετη σειρά

(το unsigned_number θα είναι το start symbol)

Οι «Κανονικοί Ορισμοί» που εμφανίστηκαν προηγουμένως:
digit → 0 | 1 | … | 9

unsigned_integer → digit digit*

unsigned_number → unsigned_integer (…)

δεν είναι γραμματική, αλλά μακρο-ορισμοί (regular definitions).

Για να τους κάνουμε τυπική γραμματική, τους

αντιστρέφουμε:

βάζουμε πρώτο τον πιο σύνθετο

(unsigned_number) και συνέχεια τους πιο απλούς.»

Το unsigned_number γίνεται το start symbol,

γιατί αυτό θέλουμε τελικά να αναγνωρίσουμε:

έναν αριθμό σε Pascal.

Οι υπόλοιποι κανόνες (unsigned_integer και

digit) μπαίνουν μετά από αυτόν, όπως σε κάθε

κανονική γραμματική.

Άρα η γραμματική γίνεται:
unsigned_number → unsigned_integer ((.

unsigned_integer) | ε) ((E|e)(+|-|ε)

unsigned_integer | ε)

unsigned_integer → digit digit*

digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Λεξική Ανάλυση

◼ Αποδεικνύεται ότι ένα σύνολο κανονικών

εκφράσεων, είναι αντίστοιχο με τυπική

κανονική γραμματική.
Κάθε Regular Expression μπορεί να μετατραπεί σε Κανονική

Γραμματική.

Και κάθε Κανονική Γραμματική μπορεί να μετατραπεί σε Regular

Expression.

Οτιδήποτε μπορούμε να περιγράψουμε με regex, μπορούμε να το

περιγράψουμε και με τυπική κανονική γραμματική.

Άρα τα δύο είναι ισοδύναμα εργαλεία.

Γι’ αυτό η λεξική ανάλυση μπορεί να βασίζεται και σε regex και σε

finite automata και σε κανονικές γραμματικές — είναι όλα το ίδιο

“σύστημα” με διαφορετική μορφή.

Λεξική Ανάλυση

◼ Πεπερασμένα Αυτόματα

Finite State Automata – FSA
Διαβάζει χαρακτήρες έναν-έναν, και ανάλογα με τον χαρακτήρα και την τρέχουσα κατάσταση:

πηγαίνει σε άλλη κατάσταση ή

αποτυγχάνει

Στόχος: να αποφασίσει αν το string είναι έγκυρο token

◼ Τρόπος λειτουργίας:

 Διαβάζει κάθε φορά ένα χαρακτήρα από αριστερά.

 «Αποφασίζει» αν το string που έχει διαβάσει μέχρι τώρα, είναι αποδεκτό ως

token. Η απόφαση αυτή καθορίζεται από την «κατάσταση» στην οποία βρίσκεται το

αυτόματο μετά την ανάγνωση του τελευταίου χαρακτήρα.

 Όταν αναγνωριστεί ότι τελείωσε η λέξη, το token είναι αποδεκτό αν το αυτόματο βρεθεί

σε «τελική κατάσταση». Αν βρεθεί σε άλλη κατάσταση, δεν γίνεται αποδεκτό.

Λεξική Ανάλυση

◼ Παράδειγμα:

Πεπερασμένο Αυτόματο που αναγνωρίζει

δυαδικούς αριθμούς οι οποίοι έχουν περιττό

αριθμό από 1

Α Β

0
1

1

0

Αρχική Κατάσταση Τελική Κατάσταση

(αποδοχή)

Αντίστοιχη KE: 0*10*(10*10*)* ή (0*10*1)*0*10*

Λεξική Ανάλυση

◼ Ισοδύναμη αναπαράσταση:

Πίνακας Καταστάσεων – Μεταβάσεων

Τρέχουσα

Κατάσταση

Χαρακτήρας

που διαβάζεται

Νέα Κατάσταση Αποδοχή token

A 0 A OXI

A 1 B NAI

B 0 B NAI

B 1 A OXI

Λεξική Ανάλυση

◼ Λειτουργία του FSA για την είσοδο 100101:

Αναγνωσμένοι

χαρακτήρες

Νέα Κατάσταση Αποδοχή token

A OXI

1 B NAI

10 B NAI

100 B NAI

1001 A OXI

10010 A OXI

100101 B NAI

Λεξική Ανάλυση

◼ Ένα Πεπερασμένο Αυτόματο έχει:
 Μία αρχική κατάσταση

 Μία ή περισσότερες τελικές καταστάσεις

 Ένα σύνολο μεταβάσεων

◼ Κάθε string που ξεκινάει το Πεπερασμένο Αυτόματο
από την αρχική κατάσταση, και τελειώνει σε μια
τελική κατάσταση, είναι αποδεκτό token.

◼ Τα Πεπερασμένα Αυτόματα που χρησιμοποιούμε
είναι ντετερμινιστικά.

◼ Μη-ντετερμινιστικά είναι αυτά που έχουν
περισσότερες από μία μεταβάσεις με το ίδιο label.

Λεξική Ανάλυση

◼ Υλοποίηση:

 Κάθε κατάσταση είναι μια ρουτίνα του προγράμματος που

υλοποιεί το FSA

 Ο λεξικός αναλυτής ξεκινά με GETCHAR από αριστερά,

καλώντας ένα FSA

 Αν ο λεξικός αναλυτής δεν φτάσει σε τελική κατάσταση

του τρέχοντος FSA, επιστρέφει στον αρχικό χαρακτήρα

και ξεκινά ένα άλλο FSA

◼ Στην Άσκηση θα χρησιμοποιήσουμε το γεννήτορα

λεξικών αναλυτών flex που βασίζεται σε FSAs

Λεξική Ανάλυση
◼ 2ο Παράδειγμα:

Πεπερασμένο Αυτόματο που αναγνωρίζει

δυαδικούς αριθμούς οι οποίοι έχουν άρτιο αριθμό

από 1

Α Β

0
1

1

0

Αρχική και

Τελική

Κατάσταση

Αντίστοιχη KE: 0*(10*10*)* ή (0*10*1)*0*

Λεξική Ανάλυση

Τρέχουσα

Κατάσταση

Χαρακτήρας

που διαβάζεται

Νέα Κατάσταση Αποδοχή token

A 0 A ΝΑΙ

A 1 B ΟΧΙ

B 0 B ΟΧΙ

B 1 A ΝΑΙ

Πίνακας Καταστάσεων – Μεταβάσεων

Λεξική Ανάλυση

◼ Λειτουργία του FSA για την είσοδο 100101:

Αναγνωσμένοι

χαρακτήρες

Νέα Κατάσταση Αποδοχή token

A ΝΑΙ

1 B ΟΧΙ

10 B ΟΧΙ

100 B ΟΧΙ

1001 A ΝΑΙ

10010 A ΝΑΙ

100101 B ΟΧΙ

Λεξική Ανάλυση

Αντίστοιχη KE: 0 + | (0*10*10*) +

Γ
0

Α Β

◼ 3ο Παράδειγμα:

Πεπερασμένο Αυτόματο που αναγνωρίζει
δυαδικούς αριθμούς οι οποίοι έχουν άρτιο αριθμό
από 1, χωρίς το є:

1

1

1

0
0

Λεξική Ανάλυση

Β

◼ 4ο Παράδειγμα:

Πεπερασμένο Αυτόματο που αναγνωρίζει ονόματα
μεταβλητών που αρχίζουν με γράμμα και
αποτελούνται από γράμματα και αριθμητικά ψηφία

Γράμμα ή

ψηφίο

Γράμμα

Α

Άλλο

ERROR ή

άλλο FSA

Άλλο

ERROR ή

άλλο FSA

Λεξική Ανάλυση

Αντίστοιχη KE: (+ | -)? (0 – 9) +

Β
— ή +

◼ 5ο Παράδειγμα:

Πεπερασμένο Αυτόματο που αναγνωρίζει
προσημασμένους ή μη-προσημασμένους
ακέραιους αριθμούς

Ψηφίο

Α Γ
Ψηφίο

Ψηφίο

Γλώσσες του Chomsky

ΤΥΠΟΣ 0: Γλώσσες χωρίς περιορισμούς

ΤΥΠΟΣ 1: Γλώσσες με συμφραζόμενα

ΤΥΠΟΣ 2: Γλώσσες χωρίς συμφραζόμενα

ΤΥΠΟΣ 3: Κανονικές Γλώσσες

Τύπος 2: Γλώσσες χωρίς συμφραζόμενα

(context-free languages)

◼ Η Γραμματική G = (Σ, Ν, Ρ, Start) είναι χωρίς
συμφραζόμενα, αν οι παραγωγές της είναι της
μορφής:

Α → s όπου Α є Ν και s є Σ U N

◼ Ονομάζονται έτσι, διότι αντικαταστάσεις μπορούν
να γίνουν οπουδήποτε εμφανίζεται μη-τερματικό
σύμβολο, χωρίς να λαμβάνονται υπόψη τα
περιβάλλοντα σύμβολα (context)

◼ Κατάλληλες για συντακτική ανάλυση

◼ Αναγνωρίζονται από push-down αυτόματα

Συντακτική Ανάλυση (1)

◼ Για τη Συντακτική Ανάλυση είναι κατάλληλες οι

Γραμματικές Χωρίς Συμφραζόμενα

◼ Τυπική σημειογραφία BNF (Backus Naur Form) για

τον ορισμό Γραμματικών Χωρίς Συμφραζόμενα

(context-free grammars)

◼ Μετασύμβολα της σημειογραφίας BNF, για τον

ορισμό των κανόνων της Γλώσσας:

::= ορίζεται ως

| εναλλακτικός κανόνας – ή

< … > Μη-τερματικό σύμβολο (συντακτική κατηγορία)

Συντακτική Ανάλυση (2)

◼ Και η Λεξική Ανάλυση θα μπορούσε να είναι μέρος της

Συντακτικής. Π.χ. η BNF Γραμματική:

<ψηφίο> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

η οποία ορίζει τον τύπο token «αριθμητικό ψηφίο».

◼ Διότι οι Κανονικές Γλώσσες (λεξική ανάλυση), είναι

υποσύνολο των Γλωσσών Χωρίς Συμφραζόμενα

(συντακτική ανάλυση).

◼ Με τις Γλώσσες Χωρίς Συμφραζόμενα, μπορούμε να

περιγράψουμε πιο σύνθετες γλώσσες. Π.χ.

<υπο-συνθήκη εντολή> ::= if <λογική έκφραση> then <εντολή>

else <εντολή> | if <λογική έκφραση> then <εντολή>

Συντακτική Ανάλυση (3)
Χρήσιμη μορφή κανόνα, η αναδρομή - Τι σημαίνει «αναδρομή» σε BNF

Ένα μη τερματικό έχει αναδρομή όταν: εμφανίζεται στο δεξί μέλος κάποιου κανόνα που το ορίζει

άμεσα ή έμμεσα

<μη-προσ. ακέραιος> ::= <ψηφίο> | <μη-προσ. ακέραιος><ψηφίο>

<ψηφίο> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

◼ Μία ακόμα BNF Γραμματική:

◼ <Α> ::= 0 | <Β> | 0<Β>

◼ <Β> ::= <Β><C> | <D>

◼ <C> ::= 0 | <D>

◼ <D> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Ένας μη-προσημασμένος ακέραιος είναι:

•είτε ένα μόνο ψηφίο

•είτε ένας μη-προσημασμένος ακέραιος

ακολουθούμενος από ένα ψηφίο

7

→ <ψηφίο>

42

→ <μη-προσο. ακέραιος><ψηφίο>

123

→ <μη-προσο. ακέραιος><ψηφίο><ψηφίο>

20256

→ συνεχής επανάληψη του ίδιου κανόνα
Το <D> είναι οποιοδήποτε ψηφίο από 1 έως 9 (όχι το 0).

Το <C> είναι οποιοδήποτε ψηφίο από 0 έως 9

Βάση: → <D> → ξεκινά με 1–9

Αναδρομή: → <C> → προσθέτει όσα ψηφία

θέλουμε (0–9) στο τέλος

το <A> μπορεί να είναι:

0 ή ένας θετικός ακέραιος χωρίς αρχικό μηδέν () ή 0

ακολουθούμενο από έναν τέτοιο ακέραιο (0)

Συντακτική Ανάλυση (4)

◼ Μία μικρή BNF Γραμματική:

<έκφραση> ::= id | αρ | <έκφραση> <πράξη> <έκφραση> |
| (<έκφραση>) | - <έκφραση>

<πράξη> ::= + | - | * | / | ↑

όπου: id αρ είναι είδη token αναγνωρισμένα στη λεξική ανάλυση

(id = αναγνωριστικό/όνομα, αρ = αριθμός)

<έκφραση> = start symbol

Συντακτική Ανάλυση (5)

◼ Αναγνώριση σωστών προγραμμάτων:

Top – down Parsing → Δέντρο Συντακτικής

Ανάλυσης (Parse Tree)

◼ Π.χ. για την έκφραση Α – C

<έκφραση>

<έκφραση> <πράξη> <έκφραση>

id (A) – id (C)

ένας top-down parser:

ξεκινά από <έκφραση>

επιλέγει κανόνες

κατασκευάζει δέντρο

ελέγχει αν η είσοδος είναι

συντακτικά σωστή

η έκφραση A - C:

παράγεται από τη γραμματική

άρα είναι έγκυρη

Συντακτική Ανάλυση (6)

◼ Πρέπει, ξεκινώντας με ρίζα το start symbol, να

δημιουργείται ένα δέντρο, που φύλλα του είναι η

ακολουθία χαρακτήρων που θέλουμε να

αναγνωριστεί.

◼ Οι ακολουθίες χαρακτήρων που μπορούν να

δημιουργηθούν από το start symbol με κάποιο

parse tree, συγκροτούν τη Γλώσσα που ορίζει η

Γραμματική.

◼ Το Δέντρο Συντακτικής Ανάλυσης για την

αναγνώριση της έκφρασης (Α + Β) * C :

Συντακτική Ανάλυση (7)

<έκφραση>Parse Tree για το:

(Α + Β) * C
<έκφραση> <πράξη> <έκφραση>

(<έκφραση>) *
id (C)

<έκφραση> <έκφραση><πράξη>

id (A) + id (B)

Συντακτική Ανάλυση (8)

<έκφραση>
Parse Tree για το:

(Α +) * C

<έκφραση> <πράξη> <έκφραση>

(<έκφραση>) *
id (C)

<έκφραση> <έκφραση><πράξη>

id (A) + ? (ERROR)

Συντακτική Ανάλυση (9)

Μια πιο σύνθετη Γραμματική:

<A> ::= <E> =

 ::= <C> | + <C> | - <C>

<C> ::= <D> | <C> * <D> | <C> / <D>

<D> ::= <E> | αρ | ()

<E> ::= id | id [<F>]

<F> ::= | <F> ,

Συντακτική Ανάλυση (10)

Είναι μια Γραμματική για εντολές ανάθεσης:

<εντολή ανάθεσης> ::= <μεταβλητή> = <έκφραση>

<έκφραση> ::= <όρος> | <έκφραση> + <όρος> |

| <έκφραση> - <όρος>

<όρος> ::= <παράγοντας> | <όρος> * <παράγοντας> |

| <όρος> / <παράγοντας>

<παράγοντας> ::= <μεταβλητή> | αρ | (<έκφραση>)

<μεταβλητή> ::= id | id [<λίστα δεικτών>]

<λίστα δεικτών> ::= <έκφραση> | <λίστα δεικτών> , <έκφραση>

Π.χ. Α = Β+Κ-3 C[3,2N-4] = L[(3*P[X]-H)+67/D[9]]+4

Συντακτική Ανάλυση (11)

Δέντρο

Συντακτικής

Ανάλυσης

για το

W=Y*(U+V)

<εντολή ανάθεσης>

<μεταβλητή> =

<παράγοντας>
)

id (W) <όρος>

<όρος>

<έκφραση>

<μεταβλητή>

id (Y)

* <παράγοντας>

(<έκφραση>

<έκφραση>

<όρος>

<παράγοντας>

+ <όρος>

<παράγοντας>

<μεταβλητή>

<μεταβλητή>
id (V)

id (U)

Συντακτική Ανάλυση (12)

Εναλλακτική Γραμματική για την ίδια Γλώσσα:

<εντολή ανάθεσης> ::= <μεταβλητή> = <έκφραση>

<έκφραση> ::= <όρος> | <έκφραση> * <όρος> |

| <έκφραση> + <όρος>

<όρος> ::= <παράγοντας> | <όρος> - <παράγοντας> |

| <όρος> / <παράγοντας>

<παράγοντας> ::= <μεταβλητή> | αρ | (<έκφραση>)

<μεταβλητή> ::= id | id [<λίστα δεικτών>]

<λίστα δεικτών> ::= <έκφραση> | <λίστα δεικτών> , <έκφραση>

Συντακτική Ανάλυση (13)
◼ Extended BNF σημειογραφία.

◼ Επιπλέον μετασύμβολα:
[…] : Προαιρετικό

{ … } : 0 ή περισσότερες εμφανίσεις

(…) : Ομαδοποίηση

<εντολή ανάθεσης> ::= <μεταβλητή> = <έκφραση>

<έκφραση> ::= <όρος> { (+ | -) <όρος> }

<όρος> ::= <παράγοντας> { (* | /) <παράγοντας> }

<παράγοντας> ::= <μεταβλητή> | αρ | (<έκφραση>)

<μεταβλητή> ::= id | id [<λίστα δεικτών>]

<λίστα δεικτών> ::= <έκφραση> { , <έκφραση> }

Μειονέκτημα: Μερικές φορές κρύβεται η αναδρομή

Συντακτική Ανάλυση (14)

◼ Ισοδύναμη μέθοδος περιγραφής του συντακτικού
με την BNF: Συντακτικά Διαγράμματα.

◼ Κανόνες μετατροπής BNF σε Συντακτικά
Διαγράμματα, στην περιγραφή της Pascal από
τον Wirth, 1976:

1. Τερματικό Σύμβολο a a

2. Μη-τερματικό Σύμβολο <v> v

Συντακτική Ανάλυση (15)

3. <P> ::= <v1> | a1 | <v2> | є | a2

v1

v2

a1

є

a2

P

Το μη τερματικό <P> μπορεί να παραχθεί με πέντε

εναλλακτικούς τρόπους:

1) <v1>

2) a1

3) <v2>

4) ε (κενή συμβολοσειρά)

5) a2

Το | σημαίνει επιλογή (OR)

Κάθε “|” στην BNF γίνεται παράλληλο κλαδί στο διάγραμμα

Συντακτική Ανάλυση (16)

4. <P> ::= <v1> a1 <v2> P v1 a1 v2

6. <P> ::= { <v1> }

0 ή περισσότερες φορές το <v1>

δηλ. <P> ::= є | <v1><P>

5. <P> ::= [<v1>]

0 ή 1 φορές το <v1>

δηλ. <P> ::= є | <v1> v1

P

v1

P

7. <P> ::= <v1> | <v1><P>

1 ή περισσότερες φορές το <v1>

v1P

Το <P> παράγεται υποχρεωτικά από:

1)ένα <v1>

2)μετά το τερματικό σύμβολο a1

3) μετά ένα <v2>

Συντακτική Ανάλυση (17)

◼ Το παράδειγμα

<έκφραση> ::= id | αρ | <έκφραση> <πράξη> <έκφραση> |

| (<έκφραση>) | - <έκφραση>

έκφραση

id

πράξη

αρ

–

()έκφραση

Συντακτική Ανάλυση (18)

Η σύνθετη Γραμματική για εντολές ανάθεσης:

<εντολή ανάθεσης> ::= <μεταβλητή> = <έκφραση>

<έκφραση> ::= <όρος> | <έκφραση> + <όρος> |

| <έκφραση> - <όρος>

<όρος> ::= <παράγοντας> | <όρος> * <παράγοντας> |

| <όρος> / <παράγοντας>

<παράγοντας> ::= <μεταβλητή> | αρ | (<έκφραση>)

<μεταβλητή> ::= id | id [<λίστα δεικτών>]

<λίστα δεικτών> ::= <έκφραση> | <λίστα δεικτών> , <έκφραση>

Συντακτική Ανάλυση (19)

εντ. ανάθεσης μεταβλητή = έκφραση

<εντολή ανάθεσης> ::= <μεταβλητή> = <έκφραση>

όροςέκφραση

+

–

<έκφραση> ::= <όρος> | <έκφραση> + <όρος> |

| <έκφραση> - <όρος>

Συντακτική Ανάλυση (20)

παράγονταςόρος

*

/

<όρος> ::= <παράγοντας> | <όρος> * <παράγοντας> |

| <όρος> / <παράγοντας>

Συντακτική Ανάλυση (21)

μεταβλητήπαράγοντας

αρ

έκφραση()

<παράγοντας> ::= <μεταβλητή> | αρ | (<έκφραση>)

Συντακτική Ανάλυση (22)

μεταβλητή id

Λίστα δεικτών[]

λίστα δεικτών έκφραση

,

<μεταβλητή> ::= id | id [<λίστα δεικτών>]

<λίστα δεικτών> ::= <έκφραση> | <λίστα δεικτών> , <έκφραση>

Ισοδύναμες Γραμματικές (1)

◼ Ισοδύναμες Γραμματικές:

Γραμματικές που παράγουν την ίδια γλώσσα.

 Δηλαδή, οι γραμματικές G1 και G2 είναι ισοδύναμες, αν και

μόνο αν L(G1) = L(G2)

 Χρήσιμη ιδιότητα στην κατασκευή compilers:

◼ Κατά τη σχεδίαση, χρησιμοποιούμε απλές γραμματικές

που είναι εύκολα κατανοητές

◼ Στη συνέχεια, ίσως χρειαστεί να τις μετασχηματίσουμε σε

ισοδύναμες, με ιδιότητες που τις κάνουν πιο εύκολα

υλοποιήσιμες

 Το πρόβλημα της διαπίστωσης της ισοδυναμίας δύο

γραμματικών είναι μη-υπολογίσιμο.

Ισοδύναμες Γραμματικές (2)

◼ Διφορούμενες (ambiguous) Γραμματικές Χωρίς

Συμφραζόμενα:

Όταν υπάρχουν 2 ή περισσότερα δέντρα συντακτικής

ανάλυσης για κάποια/ες παραγόμενη συμβολοσειρά.

 Μια διφορούμενη γραμματική μπορεί να είναι ισοδύναμη με

άλλη γραμματική που δεν είναι διφορούμενη.

 Στους compilers, αποφεύγουμε τη χρήση διφορούμενων

γραμματικών, γιατί οδηγούν σε σημασιολογικές ασάφειες.

 Οι γραμματικές που δεν μπορούν να μετασχηματιστούν σε

μη-διφορούμενες, ονομάζονται εγγενώς διφορούμενες

(inherently ambiguous).

Ισοδύναμες Γραμματικές (3)

◼ Παράδειγμα διφορούμενης γραμματικής:

<Ε> ::= id | <Ε> + <Ε> | <Ε> * <Ε> | (<Ε>)

Δέντρα Συντακτικής Ανάλυσης για το:

Α + Β * C

Ισοδύναμες Γραμματικές (4)

<E>

<E> <E>+

<E> * <E>id(A)

id(B) id(C)

<E>

<E> <E>*

id(B)

id(C)<E> + <E>

id(A)

Ισοδύναμες Γραμματικές (5)

◼ Ισοδύναμη Γραμματική μη-διφορούμενη:

<Ε> ::= <Ε> + <T> | <T>

<T> ::= <T> * <F> | <F>

<F> ::= (<Ε>) | id

Δηλαδή, «επιβάλλουμε» τη χρήση από τη ρίζα,

του κανόνα <Ε> + <Ε> . Αυτό ταιριάζει με τη

σημασιολογία που θα θέλαμε: Η πρόσθεση είναι

υψηλότερου επιπέδου από τον πολλαπλασιασμό

στην ιεραρχία των αριθμητικών τελεστών.

Ισοδύναμες Γραμματικές (6)

Δηλαδή, δημιουργήσαμε μια

ισοδύναμη γραμματική, αλλά

πιο πολύπλοκη, που παράγει

και πιο πολύπλοκα δέντρα

συντακτικής ανάλυσης.

Όμως, δεν είναι

διφορούμενη…

<E>

<E> <Τ>+

<Τ> <Τ> * <F>

id(B)

id(C)<F> <F>

id(A)

Συντακτική Ανάλυση Top-Down (1)
◼ Top-Down Συντακτική Ανάλυση (Καθοδική)

◼ Ο Συντακτικός Αναλυτής (ΣΑ) πρέπει να αποφασίσει για τα

εξής:

1. Ποιος κανόνας παραγωγής θα χρησιμοποιηθεί για να

δημιουργηθούν τα «παιδιά» ενός κόμβου;

ΑΠΑΝΤΗΣΗ: Δύσκολη… Διαβάζει ένα αριθμό k tokens για να αποφασίσει,

χρησιμοποιεί την παραγωγή που είναι πιο αριστερά, …

1. Στη συνέχεια, με ποια σειρά θα γίνει η επεξεργασία των νέων κόμβων που

προκύπτουν;

ΑΠΑΝΤΗΣΗ: Οι περισσότεροι ΣΑ τους επεξεργάζονται από αριστερά προς τα

δεξιά.

Top-Down parsing σημαίνει ότι:

•ξεκινάμε από το αρχικό σύμβολο της γραμματικής

•προσπαθούμε να φτάσουμε στα τερματικά

σύμβολα της εισόδου

•κατασκευάζουμε το δέντρο από τη ρίζα προς τα

φύλλα

<έκφραση> ::= id

| <έκφραση> <πράξη> <έκφραση>

| (<έκφραση>)

ο αναλυτής πρέπει να αποφασίσει:

ποια παραγωγή θα εφαρμόσει

Γιατί είναι δύσκολο;

•Δεν ξέρει εκ των προτέρων ποια θα ταιριάξει

•Χρειάζεται να «κοιτάξει μπροστά» στην είσοδο

Τι κάνει στην πράξη;

•Διαβάζει k tokens lookahead

•Επιλέγει την πιο αριστερή παραγωγή που ταιριάζει

Συντακτική Ανάλυση Top-Down (2)

◼ Οι συνήθεις top-down ΣΑ αναφέρονται ως:

LL(k)

Left-to-right διάβασμα string

Leftmost δημιουργία παραγωγών

Αριθμός tokens που διαβάζονται

(k look-ahead symbols)

ο αναλυτής πρέπει να αποφασίσει:

ποια παραγωγή θα εφαρμόσει

Γιατί είναι δύσκολο;

•Δεν ξέρει εκ των προτέρων ποια θα ταιριάξει

•Χρειάζεται να «κοιτάξει μπροστά» στην είσοδο

Τι κάνει στην πράξη;

•Διαβάζει k tokens lookahead

•Επιλέγει την πιο αριστερή παραγωγή που ταιριάζει

Συντακτική Ανάλυση Top-Down (3)

◼ Γραμματικές LL(1):

Οι γραμματικές χωρίς συμφραζόμενα που αναγνωρίζονται από LL(1)

Συντακτικούς Αναλυτές.

◼ Αποδεικνύεται ότι για να είναι μια γραμματική LL(1), όλες οι παραγωγές της

πρέπει να ικανοποιούν τα εξής:

1. Να μην έχουν αριστερή αναδρομή, άμεση ή έμμεση γιατί ο top-down αναλυτής μπαίνει σε

άπειρο βρόχο και δεν μπορεί να αποφασίσει ποτέ

π.χ. <E> ::= <E> + T | T

2. Να μην έχουν 2 εναλλακτικούς κανόνες, τα δεξιά μέλη των οποίων αρχίζουν με το ίδιο

σύμβολο.

<S> ::= a A | a B

Με lookahead = a ο αναλυτής δεν ξέρει ποια παραγωγή να διαλέξει

3. Να μην έχουν 2 εναλλακτικούς κανόνες, τα δεξιά μέλη των οποίων παράγουν την κενή

συμβολοσειρά (є).

<A> ::= B | C

 ::= ε

<C> ::= ε

Και οι δύο παραγωγές μπορούν να “εξαφανιστούν” και με lookahead 1 σύμβολο δεν υπάρχει

απόφαση

Συντακτική Ανάλυση Top-Down (4)

Χρησιμοποιείται μια Στοίβα και δύο Πράξεις:

◼ Ταίριασμα συμβόλου: Αν στην κορυφή της στοίβας

βρίσκεται το τερματικό σύμβολο a και το τρέχον σύμβολο του

string εισόδου είναι επίσης a, τότε το a αφαιρείται από τη

στοίβα και διαβάζεται το επόμενο σύμβολο του string εισόδου

δηλαδή το βρήκε και προχωράει.

◼ Πρόβλεψη: Αν στην κορυφή της στοίβας βρίσκεται το μη-

τερματικό σύμβολο <Α>, το αντικαθιστούμε με το δεξιό μέρος

κάποιου κανόνα ορισμού του <Α>, με τα σύμβολα σε αντίθετη

σειρά για να επεξεργαστεί πρώτα το αριστερότερο.

Αν καμία από τις δύο πράξεις δεν μπορεί να

εφαρμοστεί, τότε υπάρχει συντακτικό σφάλμα.

Συντακτική Ανάλυση Top-Down (5)

Βήμα Στοίβα Είσοδος Πράξη

0 <S> () EOF Πρόβλεψη <S> ::= (<S>)<S>

1 <S>)<S>(() EOF Ταίριασμα συμβόλου (

2 <S>)<S>) EOF Πρόβλεψη <S> ::= є

3 <S>)) EOF Ταίριασμα συμβόλου)

4 <S> EOF Πρόβλεψη <S> ::= є

5 є EOF Αναγνώριση

Παράδειγμα υλοποίησης LL(1) Συντακτικού Αναλυτή:

Γραμματική: <S> ::= (<S>)<S> | є

String εισόδου: ()

Ο LL(1) συντακτικός αναλυτής χρησιμοποιεί στοίβα, εφαρμόζει πράξεις πρόβλεψης για μη

τερματικά και ταίριασμα για τερματικά σύμβολα. Η ανάλυση ολοκληρώνεται με επιτυχία όταν η

στοίβα και η είσοδος αδειάσουν ταυτόχρονα.

Το δέντρο συντακτικής ανάλυσης

S

S() S

є

<S> ::= (<S>)<S> | є

є

Συντακτική Ανάλυση Top-Down (6)

◼ Σε αρκετές περιπτώσεις μπορούμε να

μετατρέψουμε μια γραμματική σε ισοδύναμη

LL(1).

◼ Για τη μετατροπή αυτή, χρησιμοποιούμε τρία είδη

μετασχηματισμών:

Α. Αντικατάσταση

Α → α1 | … | αn

B → β1Αβ2

Α → α1 | … | αn

B → β1α1β2 | … | β1αnβ2

Συντακτική Ανάλυση Top-Down (7)

B. Αριστερή Παραγοντοποίηση

1Α → αβ | … | αβn

Α → αB

B → β1 | … | βn

Γ. Απαλοιφή Αριστερής Αναδρομής (ΑΑ)

Α → Αα1 | … | Ααn | β1 | … | βm

Α → β1Β | … | βmB

B → α1Β | … | αnB | є

Άμεση ΑΑ:

Έμμεση ΑΑ:

Α → Αα

Α → Βα1, Β → Cα2, C → Aα3 (δηλ. Α → Αα3α2α1)

Συντακτική Ανάλυση Top-Down (8)

◼ Παράδειγμα:

<X> ::= a <A> b

<A> ::= a <A> | a

 ::= b | b

Η γραμματική αυτή δεν είναι LL(1), διότι:

 Στη 2η παραγωγή υπάρχουν 2 εναλλακτικοί κανόνες που

αρχίζουν με το ίδιο σύμβολο (a).

 Η 3η παραγωγή έχει άμεση αριστερή αναδρομή.

◼ Για να δημιουργήσουμε μια ισοδύναμη LL(1)

γραμματική, θα κάνουμε τις εξής 2 μετατροπές:

Συντακτική Ανάλυση Top-Down (9)

◼ Στη 2η παραγωγή θα χρησιμοποιήσουμε το

μετασχηματισμό της Αριστερής Παραγοντοποίησης:

 ::= b | b
 ::= b <D>

<D> ::= b<D> | є

<A> ::= a <A> | a
<A> ::= a <C>

<C> ::= <A> | є

◼ Στην 3η παραγωγή θα χρησιμοποιήσουμε το

μετασχηματισμό της Απαλοιφής Αριστερής

Αναδρομής:

Συντακτική Ανάλυση Top-Down (10)

◼ Τελικά, η ισοδύναμη LL(1) γραμματική, είναι η:

<X> ::= a <A> b

<A> ::= a <C>

<C> ::= <A> | є

 ::= b <D>

<D> ::= b<D> | є

Συντακτική Ανάλυση Bottom-Up (1)

◼ Bottom-Up Συντακτική Ανάλυση (Ανοδική)

◼ Ο Συντακτικός Αναλυτής (ΣΑ) ξεκινά την κατασκευή του

δέντρου συντακτικής ανάλυσης από τα φύλλα (τα τερματικά

σύμβολα του προς έλεγχο string).

◼ Στη συνέχεια προσπαθεί να βρει τον αριστερότερο κόμβο

που δεν έχει ακόμα φτιαχτεί, ενώ όλα τα παιδιά του έχουν

φτιαχτεί.

◼ Μέχρι να κατασκευαστεί η ρίζα του δέντρου με το Start.

◼ Κάθε στιγμή ο ΣΑ πρέπει να επιλέξει ποιους από τους ήδη

υπάρχοντες κόμβους θα χρησιμοποιήσει ως παιδιά του νέου

κόμβου που θα φτιάξει: Ελάττωση (reducing).

Συντακτική Ανάλυση Bottom-Up (2)

Παράδειγμα:

<S> ::= r

 ::= <D> | , <D>

<D> ::= a | b

Κατασκευή του δέντρου συντακτικής ανάλυσης για

το string ra,b :

Συντακτική Ανάλυση Bottom-Up (3)

<S>

,

<D>

r a b

<D>

<S> ::= r

 ::= <D> | , <D>

<D> ::= a | b

Συντακτική Ανάλυση Bottom-Up (4)

Συντακτικοί Αναλυτές ολίσθησης-ελάττωσης

(shift-reduce parsers).

Χρησιμοποιούν μια Στοίβα και δύο Πράξεις:

 Ολίσθηση (shift): Αφαιρεί ένα σύμβολο από την

αρχή του string και το βάζει στην κορυφή της

στοίβας.

 Ελάττωση (reduce): Όταν στην κορυφή της

στοίβας υπάρχει το δεξί μέλος παραγωγής.

Αφαιρούνται αυτά τα σύμβολα από τη στοίβα και

αντικαθίστανται από το αριστερό μέλος.

Συντακτική Ανάλυση Bottom-Up (5)

Βήμα Στοίβα Είσοδος Πράξη

0 є ra,b EOF Ολίσθηση

1 r a,b EOF Ολίσθηση

2 ra ,b EOF Ελάττωση <D> ::= a

3 r<D> ,b EOF Ελάττωση ::= <D>

4 r ,b EOF Ολίσθηση

5 r, b EOF Ολίσθηση

6 r,b EOF Ελάττωση <D> ::= b

7 r,<D> EOF Ελάττωση ::= , <D>

8 r EOF Ελάττωση <S> ::= r

9 <S> EOF Αναγνώριση

Συντακτική Ανάλυση Bottom-Up (6)

Προβλήματα:
◼ Στο Βήμα 4 υπήρχαν δύο επιλογές: ολίσθηση ή ελάττωση με

τον κανόνα <S> ::= r . Η 2η επιλογή καταλήγει σε

αδιέξοδο, γιατί η ανάλυση τελειώνει χωρίς να έχει σαρωθεί

όλο το string εισόδου: Σύγκρουση ολίσθησης-ελάττωσης

(shift-reduce conflict)

◼ Στο Βήμα 7 υπήρχαν δύο επιλογές: ελάττωση με τον κανόνα

 ::= , <D> ή ελάττωση με τον κανόνα ::= <D>.

Η 2η επιλογή δεν είναι καλή, γιατί δεν μπορεί να προχωρήσει

η ανάλυση: Σύγκρουση ελάττωσης-ελάττωσης (reduce-

reduce conflict)

Τέτοια προβλήματα λύνονται από ντετερμινιστικούς

ΣΑ ολίσθησης-ελάττωσης, τους LR(k).

Συντακτική Ανάλυση Bottom-Up (7)

Bottom-up ΣΑ

LR(k)

Left-to-right διάβασμα string

Rightmost δημιουργία παραγωγών

Αριθμός tokens που διαβάζονται

(look-ahead symbols)

Συντακτική Ανάλυση Bottom-Up (8)

◼ Στην πράξη χρησιμοποιούνται οι LR(1).

◼ Η λειτουργία τους είναι περισσότερο πολύπλοκη

από αυτή των LL(1).

◼ Δεν αντιμετωπίζουν πρόβλημα με αριστερή

αναδρομή.

◼ Το εργαλείο bison είναι γεννήτορας συντακτικών

αναλυτών για γραμματικές χωρίς συμφραζόμενα

τύπου LR(1)…

	Default Section
	Slide 1: Κεφάλαιο 3 :
	Slide 2: Εισαγωγή
	Slide 3: Γενικά κριτήρια Συντακτικών Κανόνων
	Slide 4: Συντακτικά Στοιχεία μιας ΓΠ (1)
	Slide 5: Συντακτικά Στοιχεία μιας ΓΠ (2)
	Slide 6: Συντακτικά Στοιχεία μιας ΓΠ (3)
	Slide 7: Συντακτικά Στοιχεία μιας ΓΠ (4)
	Slide 8: Συντακτικά Στοιχεία μιας ΓΠ (4)
	Slide 9: Ιεραρχία Συντακτικών Στοιχείων
	Slide 10: Δομή Προγράμματος – Υποπ/μάτων (1)
	Slide 11: Δομή Προγράμματος – Υποπ/μάτων (2)
	Slide 12: Φάσεις Μετάφρασης (1)
	Slide 13: Φάσεις Μετάφρασης (2)
	Slide 14: Φάσεις Ανάλυσης πηγαίου προγρ/τος (1)
	Slide 15: Φάσεις Ανάλυσης πηγαίου προγρ/τος (2)
	Slide 16: Φάσεις Ανάλυσης πηγαίου προγρ/τος (3)
	Slide 17: Φάσεις Σύνθεσης εκτελέσιμου κώδικα (1)
	Slide 18: Φάσεις Σύνθεσης εκτελέσιμου κώδικα (2)
	Slide 19: Τυπικός ορισμός Συντακτικού
	Slide 20: Τυπική Γραμματική (formal grammar)
	Slide 21: Τυπικές Γλώσσες (formal languages)
	Slide 22: Ένα παράδειγμα Τυπικής Γλώσσας
	Slide 23: Ισοδύναμη Γραμματική
	Slide 24: Ένα παράδειγμα Τυπικής Γλώσσας (2)
	Slide 25: Ένα παράδειγμα Τυπικής Γλώσσας (3)
	Slide 26: Σύστημα Παραγωγής
	Slide 27: Ιεραρχία Γραμματικών
	Slide 28: Γλώσσες του Chomsky
	Slide 29: Σύμβαση γραφής στις γραμματικές!
	Slide 30: Τύπος 3: Κανονικές Γλώσσες (regular languages)
	Slide 31: Τύπος 3: Κανονικές Γλώσσες (regular languages)
	Slide 32: Τύπος 3: Κανονικές Γλώσσες (regular languages)
	Slide 33: Παράδειγμα Κανονικής Γραμματικής
	Slide 34: Παράδειγμα Κανονικής Γραμματικής
	Slide 35: Τύπος 2: Γλώσσες χωρίς συμφραζόμενα (context-free languages)
	Slide 36: Τύπος 2: Γλώσσες χωρίς συμφραζόμενα (context-free languages)
	Slide 37: Τύπος 2: Γλώσσες χωρίς συμφραζόμενα (context-free languages)
	Slide 38: Το Παράδειγμα
	Slide 39: Τύπος 1: Γλώσσες με συμφραζόμενα (context-sensitive languages)
	Slide 40: Τύπος 1: Γλώσσες με συμφραζόμενα (context-sensitive languages)
	Slide 41: Τύπος 1: Γλώσσες με συμφραζόμενα (context-sensitive languages)
	Slide 42: Τύπος 0: Γλώσσες χωρίς περιορισμούς
	Slide 43: Τύπος 0: Γλώσσες χωρίς περιορισμούς
	Slide 44: Λεξική Ανάλυση (πρώτο στάδιο ενός μεταγλωττιστή)
	Slide 45: Λεξική Ανάλυση (πρώτο στάδιο ενός μεταγλωττιστή)
	Slide 46: Λεξική Ανάλυση
	Slide 47: Λεξική Ανάλυση
	Slide 48: Λεξική Ανάλυση
	Slide 49: Λεξική Ανάλυση
	Slide 50: Λεξική Ανάλυση
	Slide 51: Λεξική Ανάλυση
	Slide 52: Λεξική Ανάλυση
	Slide 53: Λεξική Ανάλυση
	Slide 54: Λεξική Ανάλυση
	Slide 55: Λεξική Ανάλυση
	Slide 56: Λεξική Ανάλυση
	Slide 57: Λεξική Ανάλυση
	Slide 58: Λεξική Ανάλυση
	Slide 59: Λεξική Ανάλυση
	Slide 60: Λεξική Ανάλυση
	Slide 61: Λεξική Ανάλυση
	Slide 62: Λεξική Ανάλυση
	Slide 63: Λεξική Ανάλυση
	Slide 64: Λεξική Ανάλυση
	Slide 65: Λεξική Ανάλυση
	Slide 66: Λεξική Ανάλυση
	Slide 67: Λεξική Ανάλυση
	Slide 68: Γλώσσες του Chomsky
	Slide 69: Τύπος 2: Γλώσσες χωρίς συμφραζόμενα (context-free languages)

	ΣΥΝΤΑΚΤΙΚΗ ΑΝΑΛΥΣΗ
	Slide 70: Συντακτική Ανάλυση (1)
	Slide 71: Συντακτική Ανάλυση (2)
	Slide 72: Συντακτική Ανάλυση (3)
	Slide 73: Συντακτική Ανάλυση (4)
	Slide 74: Συντακτική Ανάλυση (5)
	Slide 75: Συντακτική Ανάλυση (6)
	Slide 76: Συντακτική Ανάλυση (7)
	Slide 77: Συντακτική Ανάλυση (8)
	Slide 78: Συντακτική Ανάλυση (9)
	Slide 79: Συντακτική Ανάλυση (10)
	Slide 80: Συντακτική Ανάλυση (11)
	Slide 81: Συντακτική Ανάλυση (12)
	Slide 82: Συντακτική Ανάλυση (13)
	Slide 83: Συντακτική Ανάλυση (14)
	Slide 84: Συντακτική Ανάλυση (15)
	Slide 85: Συντακτική Ανάλυση (16)
	Slide 86: Συντακτική Ανάλυση (17)
	Slide 87: Συντακτική Ανάλυση (18)
	Slide 88: Συντακτική Ανάλυση (19)
	Slide 89: Συντακτική Ανάλυση (20)
	Slide 90: Συντακτική Ανάλυση (21)
	Slide 91: Συντακτική Ανάλυση (22)

	ΙΣΟΔΥΝΑΜΕΣ ΓΡΑΜΜΑΤΙΚΕΣ
	Slide 92: Ισοδύναμες Γραμματικές (1)
	Slide 93: Ισοδύναμες Γραμματικές (2)
	Slide 94: Ισοδύναμες Γραμματικές (3)
	Slide 95: Ισοδύναμες Γραμματικές (4)
	Slide 96: Ισοδύναμες Γραμματικές (5)
	Slide 97: Ισοδύναμες Γραμματικές (6)

	TOP-DOWN
	Slide 98: Συντακτική Ανάλυση Top-Down (1)
	Slide 99: Συντακτική Ανάλυση Top-Down (2)
	Slide 100: Συντακτική Ανάλυση Top-Down (3)
	Slide 101: Συντακτική Ανάλυση Top-Down (4)
	Slide 102: Συντακτική Ανάλυση Top-Down (5)
	Slide 103: Το δέντρο συντακτικής ανάλυσης
	Slide 104: Συντακτική Ανάλυση Top-Down (6)
	Slide 105: Συντακτική Ανάλυση Top-Down (7)
	Slide 106: Συντακτική Ανάλυση Top-Down (8)
	Slide 107: Συντακτική Ανάλυση Top-Down (9)
	Slide 108: Συντακτική Ανάλυση Top-Down (10)

	BOTTOM UP
	Slide 109: Συντακτική Ανάλυση Bottom-Up (1)
	Slide 110: Συντακτική Ανάλυση Bottom-Up (2)
	Slide 111: Συντακτική Ανάλυση Bottom-Up (3)
	Slide 112: Συντακτική Ανάλυση Bottom-Up (4)
	Slide 113: Συντακτική Ανάλυση Bottom-Up (5)
	Slide 114: Συντακτική Ανάλυση Bottom-Up (6)
	Slide 115: Συντακτική Ανάλυση Bottom-Up (7)
	Slide 116: Συντακτική Ανάλυση Bottom-Up (8)

